Nonabelian Jacobian of Projective Surfaces: Geometry and Representation Theory (Lecture Notes in Mathematics #2072) (Paperback)

Nonabelian Jacobian of Projective Surfaces: Geometry and Representation Theory (Lecture Notes in Mathematics #2072) By Igor Reider Cover Image

Nonabelian Jacobian of Projective Surfaces: Geometry and Representation Theory (Lecture Notes in Mathematics #2072) (Paperback)

$54.99


Not On Our Shelves—Ships in 1-5 Days
The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work's main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.
Product Details ISBN: 9783642356612
ISBN-10: 3642356613
Publisher: Springer
Publication Date: March 15th, 2013
Pages: 227
Language: English
Series: Lecture Notes in Mathematics